April 2020

Spindle monitoring system reduces machine downtime T he main spindle is crucial to the performance capability of the complete machine tool. It is at the heart of the machine and largely defines the achievable cutting capacity, surface quality, and precision. In turn, the spindle bearing support is one of the most heavily loaded components because it must transmit machining forces precisely at very high speeds for long periods of time and the risk of collisions can never be ruled out. It therefore comes as no surprise that the majority of machine tool downtime can be traced back to defective spindles, particularly as a result of collisions and continuous, undetected overloads. In milling operations, for example, the combination of high radial loads, long tool protrusions, and high speeds leads to particularly high loads and unfavourable kinematic conditions on the spindle bearing in the vicinity of the tool. These unfavourable and in some cases impermissible loads occur because operators have to date not had a suitable tool with which they could monitor borderline loads on spindle bearings. Schaeffler has now solved this problem with its new SpindleSense monitoring system. To coincide with EMO 2019, the first production- ready SRS sensor ring units including radial and axial measuring ring with an inside diameter of 70mm, will be available for customers to test in practical applications. Additional sizes with 80mm and 100mm inside diameters will be available at the end of the year. All units have a standard width of 16mm. The scope of delivery includes an SST setup service tool, with which SpindleSense can be parameterised and put into operation. The sensor system, integrated into the spindle bearing, measures the displacement of the spindle shaft under load in a very high resolution and in five spatial directions – three translational and two rotatory. The sensor ring transmits an electrical warning signal to the machine’s control system if the deflections measured on the rolling elements exceed a specific threshold, which is set individually for every spindle and machine type. The threshold is based on an assessment of operation-related bearing parameters such as pressure, spin/roll ratio, and cage pocket clearance, into which Schaeffler has integrated its many years of expertise in rolling bearings. All the software and the required algorithms are integrated into the 16mm wide sensor ring. No further components are required for the system. The system is locally functional and transmits an individual warning signal to the machine’s control system. Two options are available for outputting the measured values. Variant C-A0 transmits alarm signals as soon as the individually defined limit values for the bearing load and kinematics are reached. Variant C-A1 outputs the measured radial and axial displacements including tilting via CAN bus. Machine tool and spindle manufacturers can use these displacement values to develop analysis tools for optimising the utilisation of spindle capacity, e.g. by visualising the deflection collective measured by the sensor ring as a load collective. For the first time ever, the machine operator will know the degree to which the spindle capacity in each machining process is being utilised as a percentage with a high level of accuracy and therefore will be able to adjust the machining process even more precisely in terms of capacity utilisation and operating life for each machine. This means that harmful overloads are prevented despite maximum spindle loads. Safe operation in the limit range allows the operator to increase his or her productivity and also to benefit from longer spindle operating life and less frequent machine downtimes. Maintenance Matters Problem Solver 20 | Plant & Works Engineering www.pwemag.co.uk April 2020 R S Components (RS) has introduced the new Fluke TiS20+ and TiS60+handheld infrared thermal imaging cameras. Offering easy one-handed fixed-focus image capture, these new Fluke infrared imagers are ideal for engineers and technicians new to thermal imaging, allowing accurate non-contact temperature measurement from a safe distance to reveal invisible thermal issues that cannot otherwise be detected. The TiS20+ is an entry-level thermal imager intended as a troubleshooting tool for electricians, first-line industrial maintenance and HVACR technicians. Able to measure temperatures between –20°C and +150°C, it features a ruggedized 3.5- inch touchscreen and 120x90 infrared detector resolution. The TiS20+ offers exceptional battery life covering over 5 hours of continuous operation, while a sleep mode saves battery consumption between inspection points. The TiS60+ is a higher-resolution device that helps maintenance teams to identify smaller problems from further away. Also featuring a 3.5-inch touchscreen, it offers 320x240 detector resolution and an extended measurement temperature range from –20°C to +400°C. Both new thermal imagers feature Fluke’s IR-Fusion technology, which automatically captures a visible light image at the same time as each infrared image. The camera blends the two images together, pixel for pixel, so the user can view a full infrared display, full visible light, or various combinations in between — selected by sliding a finger across the screen. The precise location of any thermal issue can then be pinpointed even if the infrared contrast is low and there is little structure to the infrared image. The TiS20+ and TiS60+ are also both compatible with Fluke Connect desktop software, which allows recording and sharing of thermal images in real time via smartphones or tablets, or automatic upload to the cloud. Professional reports can be created in minutes, capturing full radiometric data to support maintenance programmes. IR thermal imaging cameras allows fast, accurate troubleshooting

RkJQdWJsaXNoZXIy MjQ0NzM=