May 2019

| SOLUTIONS | www.smartmachinesandfactories.com May 2019 | 31 | system enables 3D printing with a variety of manufacturer-independent materials, conventionally manufactured tools are replaced by lightweight, durable plastic tools. A wide variety of tools Especially the use of desktop 3D printers in the production of production equipment, tools and assembly aids shows the disruptive potential of the additive manufacturing process and has already brought about a paradigm shift. Especially in the case of assembly tools, the range of applications is not only very diverse but also particularly extensive. The advantage of desktop 3-D printing lies in the material. The large number of filaments and the wide range of material properties offers the right solution for practically every application. With only one additive manufacturing process, production equipment can be manufactured for the most diverse applications and requirements of the operating environment. The spectrum of filaments and their material properties is almost inexhaustible: strength, elasticity, temperature resistance, strength, resilience, durability in all desired variants. However, it is essential for the use of 3D printing that a material can be printed in sufficient quality and without loss of material properties. Materials for the production line Various filaments are used for production tools such as gauges, fixtures and jigs. Thermoplastic polyurethane (TPU) is used, for example, in assembly tools that are applied to the surface of the vehicle. This elastic and flexible material prevents the already painted body from being scratched during use and is also used for 3D-printed protective covers. In addition, TPU is particularly durable and is suitable for components that are exposed to extreme loads or wear quickly. It's easy to print with it. A heated printing bed is not necessary and the shrinkage and distortion ratio is minimal. The most popular standard filament is PLA (Polylactic Acid) because it is versatile and easy to print. Since PLA is brittle and can melt from 60°C, it is often used for models or prototypes. Ford uses the Tough PLA variant from Ultimaker, a technical PLA filament from the Dutch printer manufacturer, which is comparable to ABS in terms of robustness, but easier to handle. It is ideal for printing technical models with larger dimensions. ABS (Acrylonitrile Butadiene Styrene different material properties from various material manufacturers, the 3D-printed production tools can be individually adapted to the respective application and manufactured. 3D printing is also used in the pilot plant at Ford in Cologne. The plant has a complete small-series production facility with which the new vehicle designs are developed to series maturity. During the development of car models, engineers require a large number of custom-fit production tools, often designed for a specific task and model. The serial production of the Ford Focus alone requires more than 50 different assembly tools, which are initially developed in the Pilot Plant and later printed on site in all European plants. The creation and procurement of these tools via external contract manufacturers takes a lot of time, is cost-intensive and slows down the development process. To optimise the workflow, Ford's Additive Manufacturing Team decided to integrate desktop 3D printers from Dutch manufacturer Ultimaker into the workflow. "Ford chose Ultimaker because the quality and reliability of the print results are in optimal proportion to the costs”, says Lars Bognar, research engineer, Additive Manufacturing at Ford. Because Ultimaker's open filament

RkJQdWJsaXNoZXIy MjQ0NzM=