May 2019

| 32 | May 2019 www.smartmachinesandfactories.com | SOLUTIONS | Copolymer) is a universal 3D printer filament. It is somewhat more flexible than PLA and is also characterised by better durability and temperature resistance. The pressure temperatures for ABS are between 210°C and 250°C and when cooled there is a risk that the component will warp. It is, however, ideally suited for tool handles or applications. Nylon filaments convince by high resistance, strength, flexibility, low friction and corrosion resistance. Because of its ability to withstand mechanical stress, nylon is ideal for a wide range of 3D-printed tools, functional prototypes and mechanical components. Ford uses various nylon variants from well-known material suppliers to the automotive industry such as DSM, Clarion or BASF. Function follows colour Filaments such as PLA are available in many different colours. Different colours can indicate the use of the tool for the vehicle variants on the same production line. With the help of identification colours, the tools can be used depending on the model type, special edition, or to distinguish the vehicle side or certain subareas. A two- colour print - the top layer in white, the underlying layer in red - can indicate wear. As soon as the red layer becomes visible, this is an indicator to renew the tool. As banal as this may sound, these small measures make a significant contribution to error-free processes and increased efficiency in production. Quality of printing The optimal coordination of hardware, software and material is decisive for a high-quality print result. To meet the growing demand from the automotive industry for industrial filaments, Ultimaker is working with leading materials manufacturers to bring high- quality engineering plastics and composites for industrial 3D printing to market with Ultimaker printers. Ultimaker provides the material producers with software that contains the extensive knowledge from research and development as well as the company's printing materials. This enables material producers to develop and maintain material profiles. Users can use these materials reliably and easily on desktop 3D printers with open filament systems. The print profiles are preconfigured in the freely accessible Ultimaker Cura slicing software and made available there. There is no need to manually enter print parameters and users can print automatically by accessing pre-configured settings. The most demanding technical plastics can smoothly be used in industrial applications with Ultimaker printers. Ultimaker currently cooperates with well-known companies such as DSM, BASF, DuPont Transportation & Advanced Polymers, Owens Corning, Mitsubishi, Henkel, Kuraray, Solvay and Clariant. Further fields of application conceivable The benefits of desktop 3D printing are obvious: comparatively low production costs in view of small piece quantities, less weight than conventionally manufactured tools and faster availability in the event of unplanned requirements. Compared to the costs for conventionally produced tools in cooperation with external partners, approx. 1000 Euro per tool is saved for printed assembly aids such as fixtures and jigs. Instead of an average of ten weeks for external contract design and manufacture, even complex assembly fixtures are now available within 10 days at the latest. Ford uses desktop 3D printers in all European plants. The development team in Cologne provides the design of the tools for other production sites, which can be printed directly on site within 24 hours. In addition, the assembly aids are up to 70% lighter than conventional tools. At Ford alone, more than 50 different additive tools are used today in the series production of the Ford Focus. While additive manufacturing is currently used at Ford for the manufacture of production aids, the possibilities of other fields of application are also being opened up at the same time.

RkJQdWJsaXNoZXIy MjQ0NzM=